

snews documentation

User’s Guide

	Installation

	Quickstart
	Run SNEWS 2.0

	Architecture
	Model

	Decider

	Database Storage

	Messages
	SNEWS Custom Messages

	SNEWS Protocols
	Coincidence Requirement

API Reference

	snews API
	snews.storage

	snews.decider

	snews.model

	snews.generate

Indices and tables

	Index

	Module Index

	Search Page

Installation

You can install snews via pip or from source.

To install with pip:

pip install -U snews

To install from source:

tar -xzf snews-x.y.z.tar.gz
cd snews-x.y.z
python setup.py install

Quickstart

	Run SNEWS 2.0

	Configuration

	Access to Hopskotch

	Generate Messages

	Alternative Instances

Run SNEWS 2.0

After installing the module, the command that does the magic is:

snews model

The two required options are:

	-f: the .env file for required environment variables.

	–no-auth: True to use the default .toml file. Otherwise, use Hopskotch authentication in the .env file.

So an example command would be

snews model --env-file config.env --no-auth

Configuration

The user should create a .env file and pass the file path to the -f
option when running SNEWS 2.0. The .env file should include the following:

	The definition of these environmental variables are:
	
	COINCIDENCE_THRESHOLD: maximum time (s) between messages for them to be considered coincident

	MSG_EXPIRATION: maximum time (s) that a message will be stored in the database cache before expiring

	TIME_STRING_FORMAT: the string format of time in all SNEWS messages.

	DATABASE_SERVER: the database server to that SNEWS 2.0 connects to in order to store messages for processing. In the current version, the app takes in a MongoDB server.

	NEW_DATABASE: “True” to drop all previous messages and “False” to keep them.

	OBSERVATION_TOPIC: the Hopskotch topic for detectors to publish messages to.

	TESTING_TOPIC: the optional topic for testing.

	ALERT_TOPIC: the Hopskotch topic for SNEWS 2.0 to publish alert messages to the detectors.

Access to Hopskotch

To configure a .toml file for hop-client module, follow the steps documented
at https://github.com/scimma/hop-client and specify –default-authentiation as False.

Otherwise, in the .env file, include the following:

USERNAME=username
PASSWORD=password

where “username” and “password” are user credentials to Hopsckoth.

Generate Messages

snews generate can be used to simulate real-time messages from experiments:

snews generate

with options

	–env-file: the .env file for configuration.

	–rate: the rate of messages sent in seconds (e.g. 2 means one message every 2 seconds).

	–alert-probability: the discrete probability that the message is significant.

	–persist: continually send messages. If not specified, send only one message.

For example, to continuously publish two messages per second, each with a 10% probability of being a significant, enter:

snews generate --env-file config.env --rate 0.5 --alert-probability 0.1

Alternative Instances

If the user does not have access to the Hopskotch or MongoDB server or both,
running local instances is a alternative choice.

	To run a Kafka instance, run the following in the shell

docker run -p 9092:9092 -it --rm --hostname localhost scimma/server:latest --noSecurity

and pass the following Kafka server to SNEWS 2.0

kafka://dev.hop.scimma.org:9092/USER-TOPIC

	To run a MongoDB instance, either run

docker run -p 27017:27017 -it --rm --hostname localhost mongo:latest

or run

pip install -U mongoengine

and pass the following MongoDB server to SNEWS 2.0

mongodb://localhost:27017/

Architecture

The SNEWS 2.0 implementation has three major components:

	Model

	Decider

	Database Storage

Model

The model initializes a Decider object and opens up a kafka stream
through hop-client to read in messages from detectors. The model would
evoke different processing functions depending on the message type. The message
types and corresponding processing algorithms are stored as a mapping in

self.mapping = {
 SNEWSObservation.__name__: self.processObservationMessage,
 SNEWSHeartbeat.__name__: self.processHeartbeatMessage
}

Upon receiving an observation message, it stores the message by calling
methods of the decider and then runs the coincidence requirement check
through the decider’s methods. If the deciding function indicates
the possibility of a potential supernova, the model generates an
alert message and sends it to all detectors through a differet Hopskotch
stream.

Each detector are required to periodically send heartbeat messages. The model
keeps a record of which detectors are on or off and removes detectors from which
it has not heard back in a long time. When receiving a heartbeat message,
the model updates the status of status and machine time of the detector included
in this message.

Decider

A decider consists of a Database Storage object and an implementation of the
SNEWS coincidence requirement protocol (the deciding() function).

Pseudocode for the deciding protocol logic is:

The API of the decider class is defined as

class IDecider(object):
def deciding(self):
 pass

def addMessage(self, time, neutrino_time, message):
 pass

def getAllMessages(self):
 pass

Database Storage

This is an object for storing and queueing observation messages
received by the model. In order to support the coincidence requirement
check and future SNEWS usage, the storage object should have the
functionality to received timestamped messages. The API of this class is

class IStorage(object):
def insert(self, time, neutrino_time, message):
 pass

def getAllMessages(self):
 pass

def cacheEmpty(self):
 pass

def getMsgFromStrID(self, post_id):
 pass

For the first release/pre-release of SNEWS 2.0, MongoDB is used
to implement this IStorage interface. TTL indexes are used to expire
messages. Two MongoDB collections are created here, with one storing all messages
and the other one acting as a timed cache for coincidence requirement check.

Messages

	SNEWS Custom Messages

SNEWS Custom Messages

SNEWS 2.0 makes use of the fact that the hop-client module supports
adding custom message formats as plugins. SNEWS 2.0 implements a
custom message plugin: https://github.com/SNEWS2/hop-plugin-snews
The message format itself is described in the SNEWS plugin documentation:
https://hop-plugin-snews.readthedocs.io/en/latest/user/messages.html

For documentation on the hop-client custom message plugins, see
https://hop-client.readthedocs.io/en/latest/user/models.html

SNEWS Protocols

	Coincidence Requirement

Coincidence Requirement

Upon observing a potential pre-supernova phenomena, the detector
generates an observation message and publish it. The SNEWS 2.0
server reads in the message and run the coincidence requirement
check defined by SNEWS astronomers. The first version of the
protocol compares the time and locations of observations among
unexpired messages. The simplified version of the algorithm is

If there're multiple messages within the last 24 hours:
 Then iterates through messages to check if any two or more are within 10s
 If yes:
 verify locations different (as long as at least two are in different locations)
 If the locations are different:
 return true
 Otherwise:
 return false
 If not, no-op or print a message
 if no:
 no-op

In future releases, the coincidence requirement protocol
will likely include triangulations to identify coordinates of the
possible supernova.

snews API

	snews.storage

	snews.decider

	snews.model

	snews.generate

snews.storage

	
class snews.storage.IStorage

	

	
class snews.storage.MongoStorage(msg_expiration, datetime_format, server, drop_db)

	
	
getAllMessages()

	sort by pymongo.ASCENDING (1) gives dates from old to recent
sort by pymongo.DESCENDING (-1) gives dates from recent to old
:return:

	
insert(sent_time, neutrino_time, message)

	Need to CONVERT STRING TIME to DATETIME OBJECT
:param time:
:param message: MUST be a dictionary
:return:

snews.decider

	
class snews.decider.Decider(coinc_threshold=10, msg_expiration=120, datetime_format='%y/%m/%d %H:%M:%S', mongo_server='mongodb://localhost:27017/', drop_db=True)

	
	
addMessage(message)

	
	Parameters

	message – message from a hopskotch kafka stream

	Returns

	

	
deciding()

	Implements the SNEWS coincidence requirement protocol to check cached messages and determine
whether an alert message will be sent.

	Returns

	True or false indicating a coincidence between messages

	
getAllMessages()

	Get all messages in history.
:return:

	
getCacheMessages()

	Get messages that have not expired.
:return:

	
class snews.decider.IDecider

	

snews.model

	
snews.model.main(args)

	main function

	
snews.model.validateJson(jsonData, jsonSchema)

	Function for validate a json data using a json schema.
:param jsonData: the data to validate.
:param jsonSchema: the schema assumed to be correct.
:return: true or false

snews.generate

	
class snews.generate.Detector(detector_id, location)

	
	
property detector_id

	Alias for field number 0

	
property location

	Alias for field number 1

	
snews.generate.generate_message(time_string_format, detectors, alert_probability=0.1)

	Generate fake SNEWS alerts/heartbeats.

	
snews.generate.main(args)

	generate synthetic observation/heartbeat messages

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 snews	

 	
 	
 snews.decider	

 	
 	
 snews.generate	

 	
 	
 snews.model	

 	
 	
 snews.storage	

Index

 A
 | D
 | G
 | I
 | L
 | M
 | S
 | V

A

 	
 	addMessage() (snews.decider.Decider method)

D

 	
 	Decider (class in snews.decider)

 	deciding() (snews.decider.Decider method)

 	
 	Detector (class in snews.generate)

 	detector_id (snews.generate.Detector property)

G

 	
 	generate_message() (in module snews.generate)

 	getAllMessages() (snews.decider.Decider method)

 	(snews.storage.MongoStorage method)

 	
 	getCacheMessages() (snews.decider.Decider method)

I

 	
 	IDecider (class in snews.decider)

 	
 	insert() (snews.storage.MongoStorage method)

 	IStorage (class in snews.storage)

L

 	
 	location (snews.generate.Detector property)

M

 	
 	main() (in module snews.generate)

 	(in module snews.model)

 	
 module

 	snews.decider

 	snews.generate

 	snews.model

 	snews.storage

 	
 	MongoStorage (class in snews.storage)

S

 	
 	
 snews.decider

 	module

 	
 snews.generate

 	module

 	
 	
 snews.model

 	module

 	
 snews.storage

 	module

V

 	
 	validateJson() (in module snews.model)

 nav.xhtml

 Table of Contents

 		
 snews documentation

 		
 Installation

 		
 Quickstart

 		
 Run SNEWS 2.0

 		
 Configuration

 		
 Access to Hopskotch

 		
 Generate Messages

 		
 Alternative Instances

 		
 Architecture

 		
 Model

 		
 Decider

 		
 Database Storage

 		
 Messages

 		
 SNEWS Custom Messages

 		
 SNEWS Protocols

 		
 Coincidence Requirement

 		
 snews API

 		
 snews.storage

 		
 snews.decider

 		
 snews.model

 		
 snews.generate

_static/plus.png

_static/file.png

_static/minus.png

